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Phase Segregation Dynamics in Particle 
Systems with Long Range Interactions. 
I. Macroscopic Limits 
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We present and discuss the derivation of a nonlinear nonlocal integrodifferential 
equation for the macroscopic time evolution of the conserved order parameter 
p(r, tl of a binary alloy undergoing phase segregation. Our model is a 
d-dimensional lattice gas evolving via Kawasaki exchange dynamics, i.e., a 
(Poisson) nearest neighbor exchange process, reversible with respect to the 
Gibbs measure for a Hamiltonian which includes both short-range (local) and 
long-range (nonlocal) interactions. The nonlocal part is given by a pair poten- 
tial y,ij(), Ix-yl), ~,>0, x and y in ~a, in the limit 7 ~ 0 .  The macroscopic 
evolution is observed on the spatial scale 7 - t  and time scale 7 -2, i.e., the density 
p(r, t) is the empirical average of the occupation numbers over a small macro- 
scopic volume element centered at r =  7x. A rigorous derivation is presented in 
the case in which there is no local interaction. In a subsequent paper (Part II) 
we discuss the phase segregation phenomena in the model. In particular we 
argue that the phase boundary evolutions, arising as sharp interface limits of the 
family of equations derived in this paper, are the same as the ones obtained 
from the corresponding limits for the Cahn-Hilliard equation. 

KEY WORDS: Interacting particle systems; Kac potential; hydrodynamic 
limit; phase segregation; spinodal decomposition. 

1. I N T R O D U C T I O N  

The process of phase segregation following a quench (sudden cooling) of a 
system from high temperature, where the system has a unique uniform 
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equilibrium phase, into the miscibility gap where two (or more) phases can 
coexist is variously known as spinodal decomposition, nucleation, coars- 
ening, etc.. It concerns the tendency of the different phases to segregate, 
creating larger and larger domains of approximately homogeneous single- 
phase regions. The problem is of great practical importance in the 
manufacturing of alloys, where the degree of segregation influences the 
properties of the material. The mathematical description of the time evoIu- 
tion of the local macroscopic order parameter in such systems, e.g., the 
difference in the concentration of A and B atoms in a binary A-B alloy, is 
commonly given by nonlinear fourth-order equations of the Cahn-Hilliard 
type. ~4~ 

These equations appear to capture much of the phenomena. In par- 
ticular, their numerical solutions show good agreement with experiments 
and with computer simulations of the Ising model (thought of as a binary 
alloy) evolving via Kawasaki exchange dynamics. This agreement relates 
both to the appearance and shape of segregated domains, which seem to 
exhibit a self-similar structure, and also to the quantitative behavior of 
the characteristic length describing these structures, which seems to grow 
like t t/3, where t is the time. While this agreement is certainly satisfying, 
the original Cahn-Hilliard equation (CHE) or the modifications of it 
proposed so far ~9~ do not seem to arise as exact macroscopic description of 
microscopic models of interacting particles, such as the Ising model with 
Kawasaki dynamics (the CHE can, however, be derived from certain 
mesoscopic Ginzburg-Landau continuous-spin models~2~). This is unlike 
some other physically motivated equations, e.g., the diffusion equation and 
the Boltzmann equation, which can be derived from idealized microscopic 
models in suitable limitsJ 7'29~ Such derivations are both of intrinsic interest 
and also indicate something about the range of applicability of the macro- 
scopic equations. The latter might be particularly relevant for the CHE, 
where all that is known mathematically about the behavior of the solutions 
is restricted to the late stages of the coarsening process when the evolution 
is assumed to be dominated by the motion of sharp interfaces between 
well-formed domains of the pure phases. It is far from clear how much 
this singles out the CHE from other possible equations describing phase 
segregation. 

In this paper we rigorously derive a macroscopic equation describing 
phase segregation in microscopic model systems with long-range interac- 
tions evolving according to stochastic Kawasaki dynamics with nearest 
neighbor exchanges. We will then, in Part II] 14~ study the interface motion 
obtained from the derived macroscopic equation, in the sharp intelface 
limit, by means of formal matched asymptotic expansions of the solution of 
the macroscopic evolution equation (see, e.g., refs. 3, 5, 18, and 24). By 
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sharp interface we mean the limit in which the phase domains are very 
large compared to the size of the interfacial region, i.e., denoting by L the 
typical size of the domains, we look for results in the limit L ~ oo. The time 
will have to be properly scaled as well, typically as some integer power of 
L, according to the type of initial condition and the choice of the tem- 
perature. Our conclusion there is that, from the sharp interface viewpoint, 
the equation derived from a particle system and the Cahn-Hilliard equa- 
tion are essentially equivalent. 

The models we consider are dynamical versions of lattice gases interac- 
ting via long-range Kac potentials, also known as local mean-field interac- 
tions. The equilibrium properties of these systems are well known.  116"2L25) 

They provide microscopic models in which the van der Waals or mean-field 
description of phase transition phenomena, which is in good qualitative (or 
even quantitative) agreement with experiments away from the critical 
point, holds exactly. This includes metastability phenomena, c25~ The corre- 
sponding dynamical models which we study here are sometimes called local 
mean-field Kawasaki dynamics. They can be described in words as follows: 
each particle hops (at a random time) from a site of the lattice 71 a to one 
of its 2d neighboring sites with a rate which depends on the particle con- 
figuration. These rates are chosen to satisfy detailed balance (reversibility) 
with respect to the Gibbs measure having the specified interaction between 
the particles. ~291 

In the simplest model we consider here there is only a long-range 
(Kac-type) potential. We will also discuss, but not investigate in detail, the 
case in which additional short-range interactions are also present. Further 
work on the same model and related ones can be found in refs. 12, 20, and 
32; these papers focus on the diffusive regime, i.e., on the region in which 
there is only one phase, but versions of the integral equation on which we 
are focusing are already present there. The case without a conservation 
law, Glauber dynamics, has received much attention (see ref. 6 and referen- 
ces therein). 

The precise definition of the model is given in the next section. We 
show there that the evolution of the macroscopic density (in the simplest 
model) is given in terms of a second-order integrodifferential equation 
(2.16). We then show that this equation can be written in terms of the 
gradient fl.ux associated with the classical local mean-field free-energy func- 
tional ~2)'25~ and a density-dependent mobility. This allows us to make a 
direct connection between the properties of the solution of the derived 
evolution equation and the equilibrium phase diagram as well as with the 
solution of the CHE. In Section 3 we argue that the gradient structure for 
the macroscopic evolution law should hold generally in systems with long- 
range Kac potentials and arbitrary additional short-range interactions. In 
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Section 4 we make a remark on the case in which a weak external field is 
present. The proof for the simple case is given in Section 5. 

2. THE PARTICLE M O D E L  A N D  ITS H Y D R O D Y N A M I C  L I M I T  

The particles live on the d-dimensional lattice A~. = { 1, 2 ..... [7 -~]  } a, 
where y > 0 is a small parameter and [ r ]  denotes the integer part of the 
real number r. We impose periodic boundary conditions on A~.. Each site 
of A~. is either occupied (1) or empty (0), hence a particle configuration is 
an element r/ of s {0, 1} "'f~' and the latter is endowed with the product 
topology. The dynamics is specified by giving an initial condition r/o ~ s 
which may be random, i.e., a measure on the Borel sets of s'2~., and some 
(stochastic) evolution rules which will define v/, for any t positive. Our aim 
is to have a Markovian dynamics for which the Gibbs measure associated 
with a given Hamiltonian and a given total particle number is the unique 
reversible time-invariant measure at a fixed temperature. The Hamiltonian 
is a real-valued function defined on I2~. and we take it to be the sum of two 
terms 

H=H., .+H r (2.1) 

with 

H.,. = -�89 ~. K ( x - y )  l?(x) q(y) (2.2) 

1 n~,=--]  ~, 7aJ(7(x-y))vl(x)q(y) (2.3) 
x ' , . . ~  m.. 

in which J is a smooth function (C ~-) from the d-dimensional unit torus T a 
to the real numbers such that J ( r ) = J ( - r ) ,  and K ( x ) = 0  if Ixl > R  for 
some R independent of 7. The term in (2.3) will be called nonlocal, while 
the one in (2.2) will be called local or short range. The Gibbs measure with 
Hamiltonian H at the temperature 1/fl (fl > 0) and total number of particle 
N ~ 77 + is defined as 

p / ~ ( V l )  _ exp(--fill(q)) (2.4) 
Z~,(N) 

where 

Z~.(N)= ~ exp(-f lH(v/))  (2.5) 
~'1 ~ ~ .~' i 
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(2.4) is a probability measure over ~ u =  {~/e~r: Z,.~a.q(x)=N}.  The 
stochastic process {r/,},>~o is the Poisson jump process 12z'291 generated by 
the operator 

L,,f(q)= ~. cr(x,y; q)[f(q ....... ) - f ( q ) ]  (2.6) 
x, yeA; .  

where f is a real-valued (bounded) function on [2y, 

( q(x) if z = y  
rf"-"(z)= ~r/(y) if z = x  (2.7) 

{, q( z ) otherwise 

and 

or(x, y; q) = q~{fl[H(r/ ....... ) -- H(r/)] } (2.8) 

if [x -y l  = 1 and is zero otherwise. Here r • ~ R + is twice differentiable 
in a neighborhood of 0 and satisfies the detailed balance or reversibility 
condition, 

~(E) = e x p ( - E )  q~(-E) (2.9) 

for all E e R .  We also assume ~ (0 )=1 :  the case ~(0)e (0 ,  m) can be 
recovered with a time change. 

Loosely speaking, the process r/, can be described in the following 
way: if at time t the configuration is q,, the probability that in the time 
interval It, t + At] the sites x, y ( I x - y [  = 1) exchange their occupation 
numbers is 

c~.(x, y; r/,) At + O((At) 2) (2.10) 

We note that if ~l(X)=r/(y), then an exchange between x and y does not 
modify the configuration r /and it is thus possible to interpret the dynamics 
in terms of particles which attempt to jump from x to y, but the jump is 
performed only if the site y is empty: this type of dynamics is said to have 
an exe&sion rule, that is, the particles have an on-site hard-core repulsion. 
A detailed construction of this process in terms of Poisson jump processes 
is given qn p. 158 of ref. 29. The configuration space we are working on 
(Qy) is finite and this avoids the difficulties connected to defining such a 
dynamics on an infinite state space (Chapter 1 of ref. 22). In Section 1.2 
(Part II) of ref. 29 it is shown that for f and g, bounded functions on g2 r, 

f g(q) L,,f(~l) dl.t~(~l) = f f(q) L,, g(q) dll~(rl) (2.11) 
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This property is called reversibility and it is a direct consequence of (2.9). 
In particular, (2.11) implies that 

Lyf(~l) IJ d/x ,(r/) = 0 (2.12) 

We will use the following notation: the generic initial condition is a 
probability measure p on s The law of the process {r/t},~o with initial 
condition p will be denoted by/'~', (E~ ~, for the expectation). The process P~ 

P is linked to the semigroup generated by L r via the formula Ey(f(q,))= 
(exp(Lrt)f)(~l)p(drl). Equation (2.12) implies that for any t ~> 0 and any 

f bounded 

d j ~E,~'(f(rh)) = 0  (2.13) 

which means that p~ is invariant under the process generated by L r. 

The Hydrodynamic Limit 

We are interested in initial states p~. such that, when y--+ O, eL, resem- 
bles more and more a profile Po, where Po is a measurable function from 
the d-dimensional unit terms T a to [0, 1], stretched by y- t .  More 
precisely, we say that {Pr} 5.>o is an initial condition associated with Po if, 
for any continuous function r from T a to N and every 6 > O, 

limoP~, ( y" .~r,~(yx) q(x)--fT, cb(r) po(r)dr[>6)=O (2.14) 

The condition (2.14) is clearly satisfied if Pr is such that ( q ( x ) ) =  
~a,.q(x) dpy(rl)=po(yX) for all x in A~ and the occupation numbers of the 
sites are independent. On the other hand, the initial condition concentrated 
on the chessboard configuration [q(x) = 1 if the sum of the components of 
x is even, ~/(x)=0 otherwise] is also obviously associated with po = 1/2 
and many other examples can be easily constructed. Loosely speaking, 
when we say that the particle system has a hydrodynamic limit, we mean 
that (2.14) holds also at later times if we replace Po by the solution of a 
suitable hydrodynamic evolution equation (in our case we will have an 
integrodifferential equation) with initial condition Po. In Section4 we 
prove the following theorem: 

Theorem 1. The hydrodynamic limit without short-range inter- 
actions. Set K(x)= 0 so that the Hamiltonian coincides with Hy. Let p~ be 
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an initial condition associated with P0 ~ C2. Then, for any t positive, 5 > 0, 
and any continuous function ~b from T d to R 

lim P ~  \ ( ?a ~ r  I r  t )dr  > 5~ = 0  (2.15) 
)' ~ 0 X E T d T d  / 

when p(r, t), r e  T a, and tE [0, oo), is the unique classical solution of the 
equation 

a,p(r, t) = V. r Vp(r, t) - tip(r, t)(1 -- p(r, t)) ~r; VJ(r - r') p(r') dr'] (2.16) 
p(r, O) = po(r) 

It is now an observation, which at first sight appears surprising, that 
(2.16) can be rewritten in the form 

Op(r, t) 
at 

where 

1 1 
~O(p) = _ ~ f r , , s ( p ( r ) ) d r _ ~ I I r a •  ' 

with 

and 

(2.17) 

J ( r - r ' )  p(r) p(r') dr dr' (2.18) 

s(p ) = --p log p -- ( 1 -- p) log( 1 -- p) (2.19) 

c;~ - tip( 1 -- p) (2.20) 

Rewriting (2.16) in the form (2.17), ~ o  is recognized as the free energy 

where 

f O ( p ) =  J ( 0 ) (  1)2 1 
- - - 2  P- -2  + f l  ( p l ~  l ~  (2.22) 

and Y(O) = ~ J(r) dr. 

I T d T d • T d 
(2.21) 

functional and ao(p) as the mobility of our model without the long-range 
interactions. This allows us to connect our equation with that of the CHE. 
Before doing that we rewrite ~-O(p), up to an irrelevant additive constant, 
in the form 
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Note that if p is constant, the second term in (2.21) vanishes, so that 
fo  is the constrained equilibrium free energy density of a homogeneous 
system/2~'zsl In fact fO.(p) is the correct equilibrium free energy density as 
long as fl<~fl,.= 1/T,.=4/?(O). If fl>fl, . ,  fO(p) has a double minimum at 
P = PIP, the two nontrivial solutions of log(p/(1 - p ) ) - - f l J ( O ) ( p -  1/2), and 
the correct free energy is then obtained by the double tangent construction. 
A heuristic derivation of (2.16) and an explanation of (2.17) is given in 
Section 3, where the generalization to the case K #  0 is considered. Equa- 
tion (2.17) has the same structure as the CHE, whose various forms corre- 
spond to different a~ and fO.(p) chosen by different authors/4'5'~8'-'61 
What is common to the different CHEs in the literature is that the second 
term on the right side of (2.21) is of the form �89 I (Vp) 2 dr, where ( >  0 is 
related to the surface tension. This can be thought of as expanding the term 
in (2.21) and keeping only some terms, which is reasonable when the scale 
on which p varies is large compared to ),-t. We discuss the relationship 
between the solutions of (2.16) and the CHE in ref. 14; see also ref. 13. 

3. THE GENERAL CASE: K ~ 0  

We start by giving a heuristic explanation of the result in Theorem I, 
which is in fact a sketch of its proof. We are for the moment still in the case 
K = O: if fl = O, the particle system reduces to the symmetric simple exclusion 
process (SEP), i.e., all the particles are performing exchanges with rate one, 
so their only interaction is given by the exclusion rule. As it is straightforward 
to verify, the Bernoulli measures/~,, with uniform density p ~ [0, 1 ], under 
which the random variables { q( x)} ..... ,~. are independent and I t/(0) dlt ~,(t/) = p, 
are invariant for the SEP dynamics and the hydrodynamic limit for the 
SEP is simply given by the heat equation (see, e.g., ref. 17), as in (2.16) 
with fl = 0. Moreover, we observe that in the case fl >/0, 

H(q ....... + " ) -  H(r/)= y(,,(x + e ) -  r /(x))f) ,"~,  tl(z)(e. VJ)(7(x - z ) ) ]  + O( y2) 
[_ d 

= 0(),) (3.1) 

for all xeA~.  and e a unit vector in Z d [(3.1) is derived in Lemma2,  
Section 5], so that 

/~ [H(,7 ....... +~ ' ) - / 4 ( t t ) ]  + o(~,'-) cy(x, x + e; 11) = 1 - -~ 

= 1 + 0 ( 7 )  (3.2) 

where we used (3.1) and the fact that (2.9) and ~(0) = 1 imply ~'(0) = -1/2.  



Phase Segregation Dynamics 45 

Formula (3.2) indicates clearly that the dynamics with/3 > 0 is a weak 
perturbation of the /3--0 dynamics. In particular, the dominant SEP 
dynamics will enforce at time t7 -2 (t > O) local equilibrium with respect to 
its invariant measure, i.e., the state of the system will locally (on spatial 
scales shorter that ),-~) be very close to the Bernoulli measure/~, and p 
will vary on the macroscopic scale ~,-~. The perturbation term in (3.1) 
generates a force term given by the negative gradient of the energy density 
at r, 

F(r)- V ( f  J(r-r ' )  p(r') &") (3.3) 

This gives an extra contribution to the macroscopic current equal to this 
force times the mobility a~ In this expression/3 measures the 
intensity of the bias in the exchange rates and p ( 1 -  p) gives the rate at 
which the exchanges actually take place when a particular site is chosen at 
random, since the system is locally described by the Bernoulli measure/~p. 
This explains the form of (2.16). 

That (2.16) can be transformed into (2.17) is clearly due to the fact 
that s(p) in (2.19) satisfies the relation 

1 
- - s " ( p )  aO(p)  = 1 (3 .4 )  

/3 

for all pc (0 ,  1). This is no accident, but, as will now show, (3.4) follows 
from the E#Tstein relation between fluxes and forces for this system. 

This will become clearer if we consider the general case K ~ 0. We call 
the system with only the local Hamiltonian H,  the reference system. The 
equilibrium free energy f~,q(p) associated with this reference system at an 
average density p ~ [0, 1 ], which depends also on fl, is uniquely defined in 
the thermodynamic limit. ~27"281 We shall further assume thatf~q(p) is strictly 
convex and real analytic, which implies that there is no phase transition for 
the equilibrium reference system associated with H~. at the temperature l/ft. 
Moreover, we are assuming that for each p e [0, 1 ] there exists a unique, 

e ~ translation-invariant and ergodic, infinite-volume limit Gibbs stat /~, such 
that ~ q(0)d/l~(~)=p. All these properties, which are to a certain extent 
equivalent', are known to hold if/3 is sufficiently smalU 27'-'8~ 

We now claim that the correct macroscopic evolution law for the case 
K ~ 0 should be 

a-~= v.  a ,v  (3.5) 
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where a,(p) is the mobility of the reference system, 

~(p)= f  L(p(r))dr+�88 ff J(r-r ')[p(r)-p(r')]2 drdr ' (3.6) 

and we have defined the constrained equilibrium free energy density (in 
analogy with ref. 21 ) as 

-- ---~-- p--  d- f~q(p) (3.7) 

which is clearly a straightforward generalization of (2.17). 
The definition of a~ for a system with short-range interactions in the 

one-phase system can be found in Part II of ref. 29, formulas (2.27), (2.71), 
and (2.72) [in our notation formulas (2.27) and (2.71) must be multiplied 
by fl]. It is given by a Green-Kubo formula and is related to the diffusion 
coefficient of the reference system D~(p) by the relation 

a~ =;GDs (3.8) 

where Xs(P) is the inverse of the derivative of the chemical potential, i.e., 
the compressibility of our reference system is defined as 

1 (f ) 
Z.,.-f~q(p) ,8 .,.~z, ~ r/(x) r/(O)dpp(r/)-P2 (3.9) 

While a complete proof of (3.7) for general short-range interactions is 
lacking, some particular cases can be handledJ II In order to justify (3.5) on 
a heuristic level we will draw an analogy with Section 3.4 of Part II of 
ref. 29. There a linear response argument is developed for the system with 
Hamiltonian 

Hv(~/)=Hs(~/)+ ~ V(ex)q(x) (3.10) 
x E A  i, 

where V(r) is a smooth function from T d to R and e > 0  is a small 
parameter. This is the Hamiltonian of a weakly driven lattice gas: the 
dynamics is defined by the Poisson rates c~., v(X, y; ~I)= q~(flAx, yHv(rl)) for 
Ix--y[ = 1 [and c~. v(X, y; ~/)= 0 otherwise]. Hence we have 

c~.,v(x, x +e; rl) 

= ~(~A.~..,. + e H s ( , l ) )  - / ~ r  + eHs( ,~) )  

x (q(x + e) --rl(X))(e. V V)(ex) + O(e 2) (3.11) 
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In the hydrodynamic scaling limit, with r scaled as ex, e--, 0, external 
force will vanish like e. Hence it can be argued (see the macroscopic 
continuity equation for the density O p / O t = - V - J ) ,  that the current J 
should be the sum of a diffusive term, unaffected by the weak external 
force, and a drift term proportional to F =  -VV(r) ,  

J = -D,.(p) Vp + a(p) F (3.12) 

with a(p) a mobility to be determined. To obtain cr we observe that the 
Gibbs measure p/~ associated with Hv(~/) at the temperature lift is a 
stationary state of our system. This implies that Op(r, t)/Ot = 0 whenever 
p(r, 0) = p~q(r) is the density obtained from p~,. In the limit e ~ 0, p~q is the 
density which minimizes the functional t2~ 

~ ' ( P )  = I [f~q(p(r)) + V(r) p(,') ] dr (3.13) 

with a total mass constraint. In particular, at the minimum, ~o~v/6 p = 
const. But, according to (3.12), p(r, t) satisfies the equation 

Op 
0t = V- [D•(p) Vp + tr(p) VV] (3.14) 

so the requirement that 8p/at=O at p(r)=p~q(r) then requires that 
= D,X. This gives the described Einstein relation, showing that tz = cz,.. 

In the model we are considering e = y and the external potential V is 
replaced by an internally generated one, - -yd~.y~bJ(~(x--y) )~l (y) .  
Taking now the hydrodynamic scaling limit, with the scaling parameter e 
set equal to ), and letting y ~ 0, the previous analyses should remain valid 
with V(r) --, -~  J ( r - r ' )  p(r') dr' in (3.14), which then gives (3.5). 

We note that if we look at a hydrodynamic space scale e-~ which is 
much larger than y -  t, say e = y6, fi > 1, then we get a purely diffusive equa- 
tion for p(r, t). This is obtained from (3.5) by dropping the second term in 
(3.6). This equation holds rigorously outside the spinodal region, where the 
new diffusion constant becomes negative, t2~ 

4. A REMARK ON THE EFFECT OF AN 
EXTERNAL DRIVING FORCE 

As one may expect, domain-coarsening phenomena become richer and 
more complicated in the presence of an external driving force, and some 
important points are still controversial (see, e.g., refs. 19 and 33). One of 

822/87/I -2-4 
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the interesting problems is understanding the scaling behavior of the cluster 
size; different behaviors are expected depending on whether the charac- 
teristic length is measured in the direction perpendicular or parallel to the 
field. 

Here we simply observe that it is straightforward to extend the results 
of this paper to the case of a system on which a weak external force is act- 
ing. This system has a Hamiltonian 

H(r / )+  ~, V(Tx)r / ( x )  (4.1) 
.x" E A~, 

where V is a smooth function from T d t o  ~, as in Section 3. Remember 
that H =  H,,,+ Hy [formula (2.2)]. The discussion in Section 3 easily gives 
the following guess for the hydrodynamic limit of this system: 

Alternatively, one can redefine ~ ( p )  as ~ ( p ) - ~  V ( r ) p ( r ) d r  and the 
evolution equation would still be (3.5). We observe that the proofs in 
Section 4 directly extend to this case if K =  0. 

The situation is similar in the case of an external force which is not the 
gradient of a potential V, e.g., a constant force E ~ R u. In this case the rates 
of the process would be 

qb( fl( H(  q ....... ) -- H(  ~I ) - ?,E . ( x - y ) ( q ( x )  - rl( y ) ) ) (4.3) 

if I x - y l  = 1 and zero otherwise and the macroscopic equation is 

t =  V .  a V  \ 6p JJ + V .  (yEa) (4.4) 

The term added to (3.5) to obtain in (4.4) is exactly the term which 
in ref. 33 is added to the CH equation to adapt it to a situation in which 
an external field is present. Problems and limitations to the use of macro- 
scopic models like (4.4) are discussed in ref. 19: (4.4) in fact does not seem 
to be suitable to describe systems with strong [O(1) and not, like here, 
O(y)] external fields. 

5. THE H Y D R O D Y N A M I C  L IM IT  OF THE 
PARTICLE SYSTEM:  PROOFS 

The proof  of Theorem 1 is an immediate consequence of Theorem 2 
and Proposition 1 given below. 
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Some Preliminary Definitions. In this section we will denote by 
ee2ed a unit lattice vector. By X~ we will mean the sum over all ejeZ d, 
(ej)~ = 3j,,. (i, j e  { 1 ..... d} ). Let us recall the Poisson rates 

cv(x,x+e;rl)=O(fld,..x+,,H,,(rl) ), xeAr., e e O  r (5.1) 

where we used the notation 

d,. yHv(r/) = Hv(rl" Y) -- H,,(r/) 

for x, y e A  r. We recall that O e C 2 satisfies (2.9), r 1, and that 
c~.(x, y; 7)=0 if I x - y l  # 1. In the proofs we shall denote by c~ y; q) the 
rates in the case in which J = 0, that is, 

c~ x e A  v (5.2) 

This process is called the simple exclusion process: the process with J ~  0 
will be treated as a perturbation of the simple exclusion process. Moreover, 
we will denote by cP(x,y; q) the rates when O(E)=exp(-E/2)  (EeR).  
The law of the simple exclusion process with initial condition p is denoted 
by po.~ 04, ( E y ) ,  while the law of the process with rates c~(x, y; ~1) is denoted 
by P~'" (El'a). 

Let M t be the set of measurable functions p: T d--} [0, 1]. The set Ml 
is equipped with the weak topology induced by duality by C(Td), the con- 
tinuous real-valued functions o n  T d, according to 

(p ,  G)  = fr; G(r) p(r) dr 

where p e M~ and G e C(Td). Given y > 0, we define the empirical measure 
of the process at r as 

Pr(r; ~) = ~. rl(x) XlZ,'o,t,-,r.c,-,+ ,),.1(r) (5.3) 
x E A~. 

where Y~ denotes the characteristic function of the set A c T d. The empiri- 
cal average of a function f :  t'2r ~ • over a ball of radius R > 0 is defined as 

1 
AvR..,.f-- f(r, .+yr/) (5.4) 

IB(R) c~ 2~"1 L y E B ( R I n Z  d 
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where B(R)= {r: Irl ~< R}, x e Ay, and r_: I2 r --* s is defined by (r , r / ) (x)= 
B be the Bernoulli measure over O r such that t/(x + z). For e e [0, 1 ], let v, 

vS~(~(x)) =co for all xeAy. We set 

~(~) B = v , ( f )  (5.5) 

Given r/e D([ 0, oo), Or) , the space of right continuous functions from 
[0, oo) to 12y with limit from the left, equipped with the Skorohod topol- 
ogy, for every t e I~ § and r e T a we define 

p,.(r, t) = PRO'; r/y-2,) (5.6) 

We will adopt the notation p),=py(.,.) and when we want to keep the 
time fixed we will write py,,, which stands for py(-; r/y-,_,). So p~,., e Ml and 
p,,e D([O, ~ ) ;  Mi). 

With this notation the family of measures {/zy} ~,>0 is an initial condi- 
tion associated with Po if for any ~ > 0 and any r e C(T a) we have that 

lim E~(l<py.o, r - <Po, r > 6 ) = 0  (5.7) 

[compare with (2.14)]. 
A function p e C ( [ 0 ,  oo), M~) is a weak solution of (2.16) if for all 

t e R  + and all CeC2"t(TUx [0, oo)), p satisfies 

fr,,P(r, t) r t) dr -  fr,,po(r) r O) dr 

= f~O, p(r, s)0,.r s)dr ds + ~fQ, p(r, s) Ar s)dr ds 

+flffQ, p(r,s)(l-p(r,s))(VJ*p)(r,s)VC(r,s)drds (5.8) 

in which Q, = Tax  [0, t). 
Finally, for f ~  C k (k e 7/§ ) we set 

Ilfl lc *= Ilf l lc0+ ~ I[0;,...0,,,fllc0 
i l  , . . . .  i a  

( i l  ..... id ~7/+ and [i~ + . . . - q - i d [  =k) ,  where H'lle" is the sup-norm. Here 
I1 II p will denote the LP-norm. 
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Theorem 2. For  any t > 0 

lim P~(l(p~, , , ,  r  - ( p , ,  r  > d ) = 0  
y ~ 0  

(5.9) 

where p, is the unique solut ion of  (5.8). 

Remark. A by-produc t  of  the p roo f  of  Theo rem 2 is that  the ran-  
d o m  variable  Pr �9 D( [0 ,  oo); Mr) converges  weakly,  as y approaches  zero, 
to the determinist ic t ra jectory p e C([0,  oo); M~), unique solution of  (5.8). 

Proof of  Theorem 2. For  al l  e > O, f :  D~, -~ R, and q �9 D r set 

R~..~,(f; r/) = ~ [Av~.,,-,..,.(f; ~ / ) -  f(Av,:,,-, ,.{no; r/))] (5.10) 
x 

in which no: t2~,~ {0, 1} is defined as no(q) =q(O). 
Let us recall the following result, which is a s t ra ightforward extension 

to any dimension of  P ropos i t ion  2.1 of  ref. 17. 

kemma 1. Given  a cylindrical 3 function f t � 9  +, and 6 > 0 ,  we 
have 

�9 . (  f,2, ) 
l i m s u p  h m s u p y a l o g P ~  ya R~.y(f;q.,.)ds>~,~ = - o o  (5.11) 

~ : ~ 0  y - - 0  ~0 

We have to extend L e m m a  1 to the case of  J-C= 0 and general initial 
condition. We are not  going to extend the l emma  to the general case, but  
only to Pf'~'~': in the general case we will obta in  a weaker,  but  sufficient, 
es t imate via a relative en t ropy  argument .  In order  to extend L e m m a  1, it 
is sufficient to show tha t  there is a constant  c such that  

/ dpp.u~. ) 
,aloot---~'  ({th},~to, r-,_~j) <~c r ~ \dpo.,.,%: 

), 

for all r / �9  D( [0 ,  y - 2 r ] ;  Dr), since (5.11) and (5.12) easily imply 

(5.12) 

) l i m s u p  l i m s u p y a l o g P ~ (  ''~'~' ),a R,.r(f, rL,.)>~6 = - o o  (5.13) 
r.~O } ,~0 

A function f on { 0, + 1 } zJ is said to be cylindrical if there exists a finite set A c E a such that 
f( r/ ) = f( ,7' ) whenever rl(x)=tf(x ) for all x~A. Hence any cylindrical function has an 
obvious restriction to .(2 r, provided that y is small enough (i.e., if A c Ar). The f which 
appears in formula (5.11) is precisely this restriction. 
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under the same conditions stated in Lemma 1. The bound (5.13) will be 
obtained via direct evaluation of the Radon-Nikodym (RN) derivative, 
whose explicit expression is 

log \dpo, 4 / 
Y 

( a#,, 
= log kava/= (5.14) 

y-2 r  

- f  ~_, [c;(x,x+e;~l,)-c~ dt (5.15) 
vO x , e  

+• fr-'-~ fcf(x,x+e;rl,_))dg__,..x+,. (5.16) 
.,.., ~o l~176 

in which #-,..,-+e is the Poisson process that counts the exchanges of 
occupation number between x to x + e in the time interval [0, t]. We will 
bound the three terms of the RN derivative [ (5.14)-(5.16) ] separately. Let 
us observe that for (5.14), since (dp~./dv~/2)(~l) <<. 2 ~'-', the desired estimate is 
immediately obtained. 

Now and later we will make use of the following lemma. 

L e m m a  2. For  x ~ T d and r/~t'2~., let 

h~"e(rl ) = A . . . . . . .  +eHy(rl) -- y(rl(x + e) -- rl(x) ) 

x[yd~, rl(z)(e . VJ)(y(x-z))]  (5.17) 

There exists a constant c~ such that for every xeA~,, every r/et'2y, and 
every e 

x , e  9 [h~ (q)l ~Cly- (5.18) 

In particular, there is a constant c2 such that for all x ~ A t, and all r/sl2r, 

[A.,,x + eH,.(r/)[ ~< c2}' (5.19) 

R e m a r k .  An immediate consequence of Lemma 2 is that the rates 
are bounded: for any J, fl, and </i, there exists Y0 such that 

sup sup c~,(x, y; r/) ~< 2 (5.20) 
y E (O, yo) q , x , y  
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Proof of Lemma 2. By definition, 

-2A,..yH,,(q) = ~ [q"'Y(z) q'Y(z')-rl(Z)rl(Z')] ~aJ((z-z')y) (5.21) 
-~, 2 '  

Add and subtract in the square brackets ~/"'Y(z) q(z') and use the symmetry 
J(r)--J(-r)  to get 

- 2A.,-. ~,Hr(~I) 

= (~(y)- ,7(x))  ~ (,r~'-"(z) + q(z)) ~d[J(~(z-x))-J(~(z-y))] 

= --2(~l(y)-~l(x))~]q(z)ya[J()~(y-z))-J(),(x-z))] (5.22) 

+ 2(q(y) - ~/(x)) = ~,d[ J(0) -- J(y(x - y ) ) ]  (5.23) 

and if [x-yl  = 1, the modulus of the term (5.23) can be bounded by 
2 IIJllc, y, ,+l  and we can substitute the discrete gradient in (5.22) with 
( x - y ) . V  and the error will be bounded by IIJllc_,~, 2, so that (5.18) is 
proven with cl = 2 IlJII c, + IIJll c'-. Formula (5.19) follows immediately from 
(5.17) and (5.18). This ends the proof of Lemma 2. | 

Let us go on with the proof of Theorem 2. The term in (5.15) can be 
written as 

fi ' -"~q,(x)(1-~l,(x+e))[c~.(x,x+e;~l,)- l]dt  (5.24) 
A'. e 

By Lemma 2 we obtain that (5.24) is equal to 

' - ' ~ l {  
~ q,(x)(1-~h(x+e)) 

x[exp(~) 'a~l , (z)(e 'VJ)(Y(z-x))+~h~""(q, ' )  - 1  ] 

+ rl,(x + e)( 1 - rl,(x)) 

x [ exp ( -  ~ ~,d+ ' ~. q,(z)(e. VJ)()'(z- x - e )  ) 
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Set gv(x; q) = ( f l /2)(yaZ:  q(z)(e.  VJ) (y (z - -x ) ) .  The modulus of (5.25) can 
be bounded by 

y - 2 z 

f �89 E { --r/,(x)r/,(x + e) 
~ 0  x ,  c, 

x [exp(ygv(x; q,)) + exp( -7,gy(x + e; r/,)) -- 2] 

+ rl ,( x)[ exp(ygv( x; q ,) ) +exp(--yg,.(x; r/,))] } dt 

+ 2(cl ~,'-)(rT,-2)(dy-d) ~ cy -d  

in which we used (5.20), (5.18), (5.19), the fact that Igv(x; q ) - g ~ . ( x +  e; q)[ 
~< (fl/2) IlJ[[ c.2 y, and c = c(d, r, fl, [IJl[ c-') < oo. The third and last piece 
(5.16) in the RN derivative is treated as follows. Given a sample path 

.~ ....... +" the total number of exchanges in {r/,: tin[0, r -2 r ]} ,  call n = Z  . . . . .  - -  ) , - 2 r  

the interval [0, y-2r ] ,  which is finite for every r/. ~D([0 ,  y-- ' r] ,  M~). The 
ith jump ( i=  1 ..... n) happens at t = t; and it moves a particle from x; to 
x~+ e;. The last term in the RN derivative is equal to 

( c;(x. x + e. , . -  ) h a y ; . .  +.. 
l ~  +e;r l ,_ ) j  

A', e 

= ~ (A.,~..,~+,,'Hv)(q,,-) 
i = 1  

= Hv(q, v ~-) -- HvOlo ) (5.26) 

which is easily bounded by 2 max,  [Hv(q) I ~ ([IJllco)y-d and so the proof 
of (5.12) [and so of (5.13)] is complete. 

Clearly (5.13) implies that for e sufficiently small 

,im ) ~.~o ~o R,:.v(f, r/.,.)>~ = 0  (5.27) 

The aim is to obtain a similar inequality for P~'. To this purpose let us 
introduce the relative entropy between pt~. and P~'~'~' on the time interval 
[0, 7-2t] :  

H~(P~. [ log \dp~4,;. ({r/,} ,~{o.v-2,3) (5.28) 
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and we will evaluate (5.28) directly by writing the RN derivative explicitly. 
The obtained expression is absolutely analogous to (5.15) and (5.16) (now 

p 0 o and cr/c r, respectively) the expressions c r -  cr/, and c~,/c~ replace c ~ -  c r 
and there is no term (5.14), since the initial condition is the same. Observe 
that by differentiating (2.9) we obtain 

r  = --exp(--E) r  - r  exp(--E)  (5.29) 

and so r  -4~(0)/2 = -1/2 .  This implies that there exists a constant 
c such that 

Hence 

Icy(x, y; q) - c~,(x, y; ,J)l ~ c r -  

Ilog(c,.(x, y; rl)/c~,(x, y; ~/))1 < cY 2 

)' t%, I~. H i P  r I P~: ''~') ~< (d7 -d)(7--2T)(C)'2) -{- (C72) Ey (n)  ~ c ' •  - d  (5.30) 

in which n is the total number of Poisson exchanges in [0, y-2r] .  The 
bound in (5.30) follows directly from (5.20). By applying a well-known 
entropy inequality [see, e.g., ref. 31, formula (2.18)] to our setup we obtain 

)' it}, log 2 + H~(P r I P f  ''~) 
~< (5.31) 

log[ 1 + 1/PP'"~'(~//~ -2' R~.,r(f, r/.) 9 6 ) ]  

From (5.13), (5.30), and (5.31) it directly follows that 

,am ,imsu ,': ) R,..~.(f, ~.~.) >/6 = 0 (5 .32 /  
~:~0 ) '~0 ~0 

Let C e C 2 " ( T d x [ 0 ,  oo)): we will use the notation r - ) = r ., t). 
Define 

(Pr.,,  Ct)r = 7"~. rlr-'-,(x) r t) (5.33) 
x 

and observe that for any t > 0 there exists c = c(r such that 

I(P,..,, r  (Pr., ,  r ~< c7 (5.34) 
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which makes the two quantities appearing in the left-hand side of (5.34) 
interchangeable for our purposes. Let us define 

F,,~(t) = ~,-2L~( (p~,,, ~k,) ,,) + O,( (p~,,, ck ,) ~) (5.35) 

where by partial derivative in t we mean the derivative with respect to the 
time dependence of ~b, and 

F2.r(t) =y-2Lr[ ( (pr , , ,  ~b,) y) 2] - 2((pr. , ,  ~b,),,) L,,((pr.,, ck,)y ) (5.36) 

It is well known (see, for instance, ref. 7) that 

and 

My(r;ck)- -<p, , ,ck~>~,-(py .o ,~o>, , -  F,,, ,(t)dt (5.37) 

are P~-martingales with respect to the filtration generated by the family of 
random variables {r/T } ~R§ Moreover, they vanish at r = 0. 

Let us start by computing Ft.y and Fz.~,. By using the definition of the 
generator, we obtain 

Fl.y( t) = y-2yd ~. C,,(X, X + e; fly-,-,) 
. x ' , e  

x [ (~b(yx, t) -- ~b(y(x + e), t)(qr-2,(x + e) - rly-2,(x))] 

+ yd ~ O,q~(yx, t) rlr-2,(x ) 
x 

and the first term on the right-hand side of (5.39) can be rewritten as 

ya~, ( A~b)(yx, t) r/r-.,,(x ) 
X 

+ yd ~. r/,-z,(x)( 1 -- r/r-2t(x + el) 
x , e  

z 

(5.39) 

(5.40) 

Nr(r; ~b) - (My(r; ~b)) 2 - F2.),(t) dt (5.38) 
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apart from corrections that are uniformly vanishing as y goes to zero, 
and so IFLr(t) I is uniformly bounded [this follows from the observation 
following (5.29) that ~ ' ( 0 ) =  - 1 / 2 ] .  Moreover, 

/-2.,,(t ) = y - 2  ~ cy(x, x + e ;  qr-2,) 
x , e  

d X , x A - e  x ~, ,~,__,, (z) r t ) -  ~,~' Y" ,~-~,(z) r t) 
_ 7. 

=y-272a ~. c,.(x, x + e ;  r/~.-_~,)[r + e), t ) --r  t)] 2 (5.41) 
.Y,e 

and from (5.41) we obtain 

IF2,~(t)l < 2  I1r ~d (5.42) 

The fact that IKp~,.,, r I, IFl.;.(t)[, and IF2,y(t)l are bounded uniformly in 
t e [ 0, T ] (T e R + ), r/e D( [ 0, Z ] ; /2  r), and ? > 0 immediately implies that the 
family of random variables {p~,} ~. >0 is (sequentially) relatively compact in 
D([0, ~ ) ;  M~) (see, for instance, refs. 17 and 15). Moreover, every limit 
point p of {Pr}y>0 lies in C([0, ~ ) ;  M~), which follows directly from the 
fact that with P~'-probability one the sup, ....... S' (y-x..,-+, . . . . . . . . .  - 3 - , _  +~)1=1 
and so the quantity in (5.33) can have jumps of size at most I1r c0 ~,, which 
vanish in the limit (see ref. 7, Theorem 2.7.8). We are then left with the task 
of identifying the limit. 

Let us observe that (5.42) and Doob's martingale inequality imply that 
for every 61>0,  C e C  zl, and T e ~  + 

lim P,~?'( sup IMy(t; r > 6 , ) = 0  (5.43) 
},~0 t e  [ 0 ,  r ]  

Observe that, because of the smoothness of r and J, for every 62 > 0, there 
is an eo > 0 such that for all e e (0, e0] the following holds: 

fl f~ ?d ~ rG(rl, ) rG + e(rh)(p~,, ' , e.  VJ)(?x)(e . Vr t) dt 
.x',e 

dt _ ya ~ Av,._,r..,.(none ' r/,) fl(pr., �9 e .  V J ) ( y x ) ( e .  r e )  ~< 6a 
x ,  e 
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and by (5.32) we obtain that for every 6 > 0 

lira hm sup Pr' fl ~ Av~-b,.,.(reo~,., rlt)(py., * e. V J) 
e ~ O  ) , ~ 0  .x',e 

x (yx)(e. V~b)(yx, t) dt 

- -  I r ~d 2 ( h v ' : - l / ' . x ( g 0 '  q t ) )  2 
0 .x'. t" 

x [fl(p~,., * e. VJ)](e. V(b)(yx, t) d t >  c~) 

~< lim ~ lira sup P'~'? (fl IlV~bl[ c,, IlJ[Ic' 
. ~  ) ' ~ 0  

• ),'Y'. [Av~-,~.,.,.(rcorte, q,)-(Av~-,y,.,.(rCo, rl,))21 dr>6 = 0  (5.44) 
A'. t" 

Take the limit in y along a convergent subsequence to obtain from (5.37), 
(5.40), (5.43), and (5.44) that for every ~ > 0 with P~'-probability going to 
1 as e goes to zero, the limit point p satisfies the inequality 

in which 

fr,,p(r, r) c~(r, r) d r -  fr,,p(r, O) ~)o(r) dr 

--rio, p(r, t)(OAb + Ack) dr dt 

-fIQ~ V~(r, t ) (p-(~, :  , p )2 ) [ f l (p ,  V J)]  drdt <8 

o~. = (2e) -dZt  _~.. +,:], 

Let e go to zero and by the arbitrariness of fi we obtain that p is a weak 
solution of (2.16). To complete the proof of Proposition 1, we have to show 
that there is only one weak solution. 

Let us then consider Pl and ,0 2 weak solutions of (2.16) with the same 
initial datum. Set w = p l - p 2 .  For each (to, to)~Qr and each e > 0  let us 
define 

~,o.,,,.~.(r, t) = O(t o + e -- t, r--  ro) (5.45) 
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in which O(r, t)=~x~z,,fg,(r-x) is the periodic heat kernel, which solves 
O,O=AO on Tax (0, oo). So the test function ~b~0,,,,.~ C~(Q,o) solves 

(5.46) 

for all (r, t ) e  Q,o- By using (5.46), we obtain [ a ( p ) = t i p ( 1 - p ) ]  

fr,~o.,,,.,(r, to) w(r, to) dr 

= f f  V~bro,,o,~.(r, t)E(VJ* w)(r, t) a(pt(r, t)) 
Ot 0 

+ (VJ * p2)(r, t) a'(fi) w(r, t)] dr dt 

in which P e [ ( P t  ^P2)  V0 , (P l  v P z )  A 1]. Since a(pt)~[O, fl/4] and 
I#(ff)l ~</L we obtain that 

[ fr, Ckro.,,,.~(r, to) w(r, to)dr 

~ c [ f l  IlVJIl~] esssup Iw(r, t)l ff  IVq6ro,,o.~(r, t)l dr dt (5.47) 
( r, t ) e Qio Q'. 

The integral term on the right-hand side of (5.47) is bounded by 
c(x/t o + e-x/~),  where c is a constant depending only on the dimension d. 
By observing that ~b,.o.to.~.(., to) is an approximate identity in e, we obtain 
that there exists a constant C (which depends only on the L ~ norm of VJ 
and on d) such that for almost every (ro, to) e Q~ we have that 

[w(ro, t0)[ ~< C ~ o  ess sup [w(r, t)l 
(r , t )EQt  0 

and so 

ess sup Iw(r, t)l ~ C.v/~ ess sup Iw(r, t)l 
(r , t )~ Qr (r . l)~ Q~ 

Choosing ~ such that C x/~ < 1 implies local uniqueness in time. But C 
depends only on J and d, so the global uniqueness follows by a bootstrap 
argument. II 

Propos i t i on  1. If Po~ C2(Td), then the solution p of (5.8) can be 
chosen in C2"I(Ta• •+). 
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Proof. Given a solution of (5.8), define 

F(r, t) = ( V J  �9 p,)(r) (5 .48)  

SO FECCC'~ Rd). Observe that this means that p solves in the 
weak sense analogous to (5.8) the equation 

O,p =V.  {Vp--/ffp(1 --p) F} (5.49) 

with initial condition poe C 2. But (5.49) is a nondegenerate parabolic 
equation which has a classical solution (Chapter 7, Section4 of ref. 11), 
besides having a unique weak solution by the same argument used to prove 
uniqueness in the proof of Theorem 2. I 
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